A Major Role For Tonic GABAA Conductances In Anesthetic Suppression Of Intrinsic Neuronal Excitability

نویسندگان

  • Mark C. Bieda
  • M. Bruce MacIver
چکیده

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABAA inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. Propofol strongly depressed action potential production induced by direct current injection, synaptic stimulation, or high-potassium solutions. Propofolinduced depression of intrinsic excitability was completely reversed by bicuculline and picrotoxin, but was strychnine-insensitive, implicating GABAA but not glycine receptors. Propofol strongly enhanced inhibitory postsynaptic currents (IPSCs) and induced a tonic GABAA-mediated current. We pharmacologically differentiated tonic and phasic (synaptic) GABAA-mediated inhibition using the GABAA receptor antagonist SR95531 (gabazine). Gabazine (20 μM) completely blocked both evoked and spontaneous IPSCs, but failed to block the propofol-induced depression of intrinsic excitability, implicating tonic, but not phasic, GABAA inhibition. Glutamatergic synaptic responses were not altered by propofol (up to 30 μM). Similar results were found in both interneurons and pyramidal cells and with the chemically unrelated anesthetic thiopental. These results suggest that suppression of CA1 neuron intrinsic excitability, by these anesthetics, is largely due to activation of tonic GABAA conductances; although other sites of action may play important roles in affecting synaptic transmission, which also can produce strong neurodepression. We propose that, for some anesthetics, suppression of intrinsic excitability, mediated by tonic GABAA conductances, operates in conjunction with effects on synaptic transmission, mediated by other mechanisms, to depress hippocampal function during anesthesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability.

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABA(A) inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices....

متن کامل

Tonic GABAA receptor-mediated signalling in temporal lobe epilepsy

The tonic activation of extrasynaptic GABAA receptors by extracellular GABA provides a powerful means of regulating neuronal excitability. A consistent finding from studies that have used various models of temporal lobe epilepsy is that tonic GABAA receptor-mediated conductances are largely preserved in epileptic brain (in contrast to synaptic inhibition which is often reduced). Tonic inhibitio...

متن کامل

The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type

The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and resul...

متن کامل

Suvorexant, a dual orexin receptor antagonist, protected seizure through interaction with GABAA and glutamate receptors

Orexin can increase neuronal excitability and induce epileptic activity. In this study, the effects of suvorexant (orexin receptor antagonist) on pentylenetetrazol (PTZ) and maximal electroshock (MES)-induced seizure were investigated. Mice were divided into 5 groups of six animals each including normal saline (10 ml/kg), diazepam (2 mg/kg) and suvorexant (50, 100 and 200 mg/kg) groups. In PTZ ...

متن کامل

Suvorexant, a dual orexin receptor antagonist, protected seizure through interaction with GABAA and glutamate receptors

Orexin can increase neuronal excitability and induce epileptic activity. In this study, the effects of suvorexant (orexin receptor antagonist) on pentylenetetrazol (PTZ) and maximal electroshock (MES)-induced seizure were investigated. Mice were divided into 5 groups of six animals each including normal saline (10 ml/kg), diazepam (2 mg/kg) and suvorexant (50, 100 and 200 mg/kg) groups. In PTZ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004